Перевод: со всех языков на английский

с английского на все языки

Aircraft Electrical Society

  • 1 Aircraft Electrical Society

    Abbreviation: AES

    Универсальный русско-английский словарь > Aircraft Electrical Society

  • 2 Общество авиационных электриков

    Универсальный русско-английский словарь > Общество авиационных электриков

  • 3 Williams, Sir Frederic Calland

    [br]
    b. 26 June 1911 Stockport, Cheshire, England
    d. 11 August 1977 Prestbury, Cheshire, England
    [br]
    English electrical engineer who invented the Williams storage cathode ray tube, which was extensively used worldwide as a data memory in the first digital computers.
    [br]
    Following education at Stockport Grammar School, Williams entered Manchester University in 1929, gaining his BSc in 1932 and MSc in 1933. After a short time as a college apprentice with Metropolitan Vickers, he went to Magdalen College, Oxford, to study for a DPhil, which he was awarded in 1936. He returned to Manchester University that year as an assistant lecturer, gaining his DSc in 1939. Following the outbreak of the Second World War he worked for the Scientific Civil Service, initially at the Bawdsey Research Station and then at the Telecommunications Research Establishment at Malvern, Worcestershire. There he was involved in research on non-incandescent amplifiers and diode rectifiers and the development of the first practical radar system capable of identifying friendly aircraft. Later in the war, he devised an automatic radar system suitable for use by fighter aircraft.
    After the war he resumed his academic career at Manchester, becoming Professor of Electrical Engineering and Director of the University Electrotechnical Laboratory in 1946. In the same year he succeeded in developing a data-memory device based on the cathode ray tube, in which the information was stored and read by electron-beam scanning of a charge-retaining target. The Williams storage tube, as it became known, not only found obvious later use as a means of storing single-frame, still television images but proved to be a vital component of the pioneering Manchester University MkI digital computer. Because it enabled both data and program instructions to be stored in the computer, it was soon used worldwide in the development of the early stored-program computers.
    [br]
    Principal Honours and Distinctions
    Knighted 1976. OBE 1945. CBE 1961. FRS 1950. Hon. DSc Durham 1964, Sussex 1971, Wales 1971. First Royal Society of Arts Benjamin Franklin Medal 1957. City of Philadelphia John Scott Award 1960. Royal Society Hughes Medal 1963. Institution of Electrical Engineers Faraday Medal 1972. Institute of Electrical and Electronics Engineers Pioneer Award 1973.
    Bibliography
    Williams contributed papers to many scientific journals, including Proceedings of the Royal Society, Proceedings of the Cambridge Philosophical Society, Journal of the Institution of Electrical Engineers, Proceedings of the Institution of Mechanical Engineers, Wireless Engineer, Post Office Electrical Engineers' Journal. Note especially: 1948, with J.Kilburn, "Electronic digital computers", Nature 162:487; 1949, with J.Kilburn, "A storage system for use with binary digital computing machines", Proceedings of the Institution of Electrical Engineers 96:81; 1975, "Early computers at Manchester University", Radio \& Electronic Engineer 45:327. Williams also collaborated in the writing of vols 19 and 20 of the MIT Radiation
    Laboratory Series.
    Further Reading
    B.Randell, 1973, The Origins of Digital Computers, Berlin: Springer-Verlag. M.R.Williams, 1985, A History of Computing Technology, London: Prentice-Hall. See also: Stibitz, George R.; Strachey, Christopher.
    KF

    Biographical history of technology > Williams, Sir Frederic Calland

  • 4 Sopwith, Sir Thomas (Tommy) Octave Murdoch

    SUBJECT AREA: Aerospace
    [br]
    b. 18 January 1888 London, England
    d. 27 January 1989 Stockbridge, Hampshire, England
    [br]
    English aeronautical engineer and industrialist.
    [br]
    Son of a successful mining engineer, Sopwith did not shine at school and, having been turned down by the Royal Navy as a result, attended an engineering college. His first interest was motor cars and, while still in his teens, he set up a business in London with a friend in order to sell them; he also took part in races and rallies.
    Sopwith's interest in aviation came initially through ballooning, and in 1906 he purchased his own balloon. Four years later, inspired by the recent flights across the Channel to France and after a joy-ride at Brooklands, he bought an Avis monoplane, followed by a larger biplane, and taught himself to fly. He was awarded the Royal Aero Society's Aviator Certificate No. 31 on 21 November 1910, and he quickly distinguished himself in flying competitions on both sides of the Atlantic and started his own flying school. In his races he was ably supported by his friend Fred Sigrist, a former motor engineer. Among the people Sopwith taught to fly were an Australian, Harry Hawker, and Major Hugh Trenchard, who later became the "father" of the RAF.
    In 1912, depressed by the poor quality of the aircraft on trial for the British Army, Sopwith, in conjunction with Hawker and Sigrist, bought a skating rink in Kingston-upon-Thames and, assisted by Fred Sigrist, started to design and build his first aircraft, the Sopwith Hybrid. He sold this to the Royal Navy in 1913, and the following year his aviation manufacturing company became the Sopwith Aviation Company Ltd. That year a seaplane version of his Sopwith Tabloid won the Schneider Trophy in the second running of this speed competition. During 1914–18, Sopwith concentrated on producing fighters (or "scouts" as they were then called), with the Pup, the Camel, the 1½ Strutter, the Snipe and the Sopwith Triplane proving among the best in the war. He also pioneered several ideas to make flying easier for the pilot, and in 1915 he patented his adjustable tailplane and his 1 ½ Strutter was the first aircraft to be fitted with air brakes. During the four years of the First World War, Sopwith Aviation designed thirty-two different aircraft types and produced over 16,000 aircraft.
    The end of the First World War brought recession to the aircraft industry and in 1920 Sopwith, like many others, put his company into receivership; none the less, he immediately launched a new, smaller company with Hawker, Sigrist and V.W.Eyre, which they called the H.G. Hawker Engineering Company Ltd to avoid any confusion with the former company. He began by producing cars and motor cycles under licence, but was determined to resume aircraft production. He suffered an early blow with the death of Hawker in an air crash in 1921, but soon began supplying aircraft to the Royal Air Force again. In this he was much helped by taking on a new designer, Sydney Camm, in 1923, and during the next decade they produced a number of military aircraft types, of which the Hart light bomber and the Fury fighter, the first to exceed 200 mph (322 km/h), were the best known. In the mid-1930s Sopwith began to build a large aviation empire, acquiring first the Gloster Aircraft Company and then, in quick succession, Armstrong-Whitworth, Armstrong-Siddeley Motors Ltd and its aero-engine counterpart, and A.V.Roe, which produced Avro aircraft. Under the umbrella of the Hawker Siddeley Aircraft Company (set up in 1935) these companies produced a series of outstanding aircraft, ranging from the Hawker Hurricane, through the Avro Lancaster to the Gloster Meteor, Britain's first in-service jet aircraft, and the Hawker Typhoon, Tempest and Hunter. When Sopwith retired as Chairman of the Hawker Siddeley Group in 1963 at the age of 75, a prototype jump-jet (the P-1127) was being tested, later to become the Harrier, a for cry from the fragile biplanes of 1910.
    Sopwith also had a passion for yachting and came close to wresting the America's Cup from the USA in 1934 when sailing his yacht Endeavour, which incorporated a number of features years ahead of their time; his greatest regret was that he failed in his attempts to win this famous yachting trophy for Britain. After his retirement as Chairman of the Hawker Siddeley Group, he remained on the Board until 1978. The British aviation industry had been nationalized in April 1977, and Hawker Siddeley's aircraft interests merged with the British Aircraft Corporation to become British Aerospace (BAe). Nevertheless, by then the Group had built up a wide range of companies in the field of mechanical and electrical engineering, and its board conferred on Sopwith the title Founder and Life President.
    [br]
    Principal Honours and Distinctions
    Knighted 1953. CBE 1918.
    Bibliography
    1961, "My first ten years in aviation", Journal of the Royal Aeronautical Society (April) (a very informative and amusing paper).
    Further Reading
    A.Bramson, 1990, Pure Luck: The Authorized Biography of Sir Thomas Sopwith, 1888– 1989, Wellingborough: Patrick Stephens.
    B.Robertson, 1970, Sopwith. The Man and His Aircraft, London (a detailed publication giving plans of all the Sopwith aircraft).
    CM / JDS

    Biographical history of technology > Sopwith, Sir Thomas (Tommy) Octave Murdoch

  • 5 Handley Page, Sir Frederick

    SUBJECT AREA: Aerospace
    [br]
    b. 15 November 1885 Cheltenham, England
    d. 21 April 1962 London, England
    [br]
    English aviation pioneer, specialist in large aircraft and developer of the slotted wing for safer slow flying.
    [br]
    Frederick Handley Page trained as an electrical engineer but soon turned his attention to the more exciting world of aeronautics. He started by manufacturing propellers for aeroplanes and airships, and then in 1909 he founded a public company. His first aeroplane, the Bluebird, was not a success, but an improved version flew well. It was known as the "Yellow Peril" because of its yellow doped finish and made a notable flight across London from Barking to Brooklands. In 1910 Handley Page became one of the first college lecturers in aeronautical engineering. During the First World War Handley Page concentrated on the production of large bombers. The 0/100 was a biplane with a wing span of 100 ft (30 m) and powered by two engines: it entered service in 1916. In 1918 an improved version, the 0/400, entered service and a larger four-engined bomber made its first flight. This was the V/1500, which was designed to bomb Berlin, but the war ended before this raid took place. After the war, Handley Page turned his attention to airline operations with the great advantage of having at his disposal large bombers which could be adapted to carry passengers. Handley Page Air Transport Ltd was formed in 1919 and provided services to several European cities. Eventually this company became part of Imperial Airways, but Handley Page continued to supply them with large airliners. Probably the most famous was the majestic HP 42 four-engined biplane, which set very high standards of comfort and safety. Safety was always important to Handley Page and in 1920 he developed a wing with a slot along the leading edge: this made slow flying safer by delaying the stall. Later versions used separate aerofoil-shaped slats on the leading edge that were sometimes fixed, sometimes retractable. The HP 42 was fitted with these slats. From the 1930s Handley Page produced a series of bombers, such as the Heyford, Hampden, Harrow and, most famous of all, the Halifax, which played a major role in the Second World War. Then followed the Victor V-bomber of 1952 with its distinctive "crescent" wing and high tailplane. Sir Frederick's last venture was the Herald short-haul airliner of 1955; designed to replace the ubiquitous Douglas DC-3, it was only a limited success.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1918. Lord Lieutenant of the County of Middlesex 1956–60. Honorary Fellow of the Royal Aeronautical Society.
    Bibliography
    1950, "Towards slower and safer flying, improved take-off and landing and cheaper airports", Journal of the Royal Aeronautical Society.
    Further Reading
    D.C.Clayton, 1970, Handley Page: An Aircraft Album, London (for details of his aircraft).
    C.H.Barnes, 1976, Handley Page Aircraft since 1907, London.
    JDS

    Biographical history of technology > Handley Page, Sir Frederick

  • 6 Appleton, Sir Edward Victor

    [br]
    b. 6 September 1892 Bradford, England
    d. 21 April 1965 Edinburgh, Scotland
    [br]
    English physicist awarded the Nobel Prize for Physics for his discovery of the ionospheric layer, named after him, which is an efficient reflector of short radio waves, thereby making possible long-distance radio communication.
    [br]
    After early ambitions to become a professional cricketer, Appleton went to St John's College, Cambridge, where he studied under J.J.Thompson and Ernest Rutherford. His academic career interrupted by the First World War, he served as a captain in the Royal Engineers, carrying out investigations into the propagation and fading of radio signals. After the war he joined the Cavendish Laboratory, Cambridge, as a demonstrator in 1920, and in 1924 he moved to King's College, London, as Wheatstone Professor of Physics.
    In the following decade he contributed to developments in valve oscillators (in particular, the "squegging" oscillator, which formed the basis of the first hard-valve time-base) and gained international recognition for research into electromagnetic-wave propagation. His most important contribution was to confirm the existence of a conducting ionospheric layer in the upper atmosphere capable of reflecting radio waves, which had been predicted almost simultaneously by Heaviside and Kennelly in 1902. This he did by persuading the BBC in 1924 to vary the frequency of their Bournemouth transmitter, and he then measured the signal received at Cambridge. By comparing the direct and reflected rays and the daily variation he was able to deduce that the Kennelly- Heaviside (the so-called E-layer) was at a height of about 60 miles (97 km) above the earth and that there was a further layer (the Appleton or F-layer) at about 150 miles (240 km), the latter being an efficient reflector of the shorter radio waves that penetrated the lower layers. During the period 1927–32 and aided by Hartree, he established a magneto-ionic theory to explain the existence of the ionosphere. He was instrumental in obtaining agreement for international co-operation for ionospheric and other measurements in the form of the Second Polar Year (1932–3) and, much later, the International Geophysical Year (1957–8). For all this work, which made it possible to forecast the optimum frequencies for long-distance short-wave communication as a function of the location of transmitter and receiver and of the time of day and year, in 1947 he was awarded the Nobel Prize for Physics.
    He returned to Cambridge as Jacksonian Professor of Natural Philosophy in 1939, and with M.F. Barnett he investigated the possible use of radio waves for radio-location of aircraft. In 1939 he became Secretary of the Government Department of Scientific and Industrial Research, a post he held for ten years. During the Second World War he contributed to the development of both radar and the atomic bomb, and subsequently served on government committees concerned with the use of atomic energy (which led to the establishment of Harwell) and with scientific staff.
    [br]
    Principal Honours and Distinctions
    Knighted (KCB 1941, GBE 1946). Nobel Prize for Physics 1947. FRS 1927. Vice- President, American Institute of Electrical Engineers 1932. Royal Society Hughes Medal 1933. Institute of Electrical Engineers Faraday Medal 1946. Vice-Chancellor, Edinburgh University 1947. Institution of Civil Engineers Ewing Medal 1949. Royal Medallist 1950. Institute of Electrical and Electronics Engineers Medal of Honour 1962. President, British Association 1953. President, Radio Industry Council 1955–7. Légion d'honneur. LLD University of St Andrews 1947.
    Bibliography
    1925, joint paper with Barnett, Nature 115:333 (reports Appleton's studies of the ionosphere).
    1928, "Some notes of wireless methods of investigating the electrical structure of the upper atmosphere", Proceedings of the Physical Society 41(Part III):43. 1932, Thermionic Vacuum Tubes and Their Applications (his work on valves).
    1947, "The investigation and forecasting of ionospheric conditions", Journal of the
    Institution of Electrical Engineers 94, Part IIIA: 186 (a review of British work on the exploration of the ionosphere).
    with J.F.Herd \& R.A.Watson-Watt, British patent no. 235,254 (squegging oscillator).
    Further Reading
    Who Was Who, 1961–70 1972, VI, London: A. \& C.Black (for fuller details of honours). R.Clark, 1971, Sir Edward Appleton, Pergamon (biography).
    J.Jewkes, D.Sawers \& R.Stillerman, 1958, The Sources of Invention.
    KF

    Biographical history of technology > Appleton, Sir Edward Victor

  • 7 Watson-Watt, Sir Robert Alexander

    [br]
    b. 13 April 1892 Brechin, Angus, Scotland
    d. 6 December 1973 Inverness, Scotland
    [br]
    Scottish engineer and scientific adviser known for his work on radar.
    [br]
    Following education at Brechin High School, Watson-Watt entered University College, Dundee (then a part of the University of St Andrews), obtaining a BSc in engineering in 1912. From 1912 until 1921 he was Assistant to the Professor of Natural Philosophy at St Andrews, but during the First World War he also held various posts in the Meteorological Office. During. this time, in 1916 he proposed the use of cathode ray oscillographs for radio-direction-finding displays. He joined the newly formed Radio Research Station at Slough when it was opened in 1924, and 3 years later, when it amalgamated with the Radio Section of the National Physical Laboratory, he became Superintendent at Slough. At this time he proposed the name "ionosphere" for the ionized layer in the upper atmosphere. With E.V. Appleton and J.F.Herd he developed the "squegger" hard-valve transformer-coupled timebase and with the latter devised a direction-finding radio-goniometer.
    In 1933 he was asked to investigate possible aircraft counter-measures. He soon showed that it was impossible to make the wished-for radio "death-ray", but had the idea of using the detection of reflected radio-waves as a means of monitoring the approach of enemy aircraft. With six assistants he developed this idea and constructed an experimental system of radar (RAdio Detection And Ranging) in which arrays of aerials were used to detect the reflected signals and deduce the bearing and height. To realize a practical system, in September 1936 he was appointed Director of the Bawdsey Research Station near Felixstowe and carried out operational studies of radar. The result was that within two years the East Coast of the British Isles was equipped with a network of radar transmitters and receivers working in the 7–14 metre band—the so-called "chain-home" system—which did so much to assist the efficient deployment of RAF Fighter Command against German bombing raids on Britain in the early years of the Second World War.
    In 1938 he moved to the Air Ministry as Director of Communications Development, becoming Scientific Adviser to the Air Ministry and Ministry of Aircraft Production in 1940, then Deputy Chairman of the War Cabinet Radio Board in 1943. After the war he set up Sir Robert Watson-Watt \& Partners, an industrial consultant firm. He then spent some years in relative retirement in Canada, but returned to Scotland before his death.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1941. FRS 1941. US Medal of Merit 1946. Royal Society Hughes Medal 1948. Franklin Institute Elliot Cresson Medal 1957. LLD St Andrews 1943. At various times: President, Royal Meteorological Society, Institute of Navigation and Institute of Professional Civil Servants; Vice-President, American Institute of Radio Engineers.
    Bibliography
    1923, with E.V.Appleton \& J.F.Herd, British patent no. 235,254 (for the "squegger"). 1926, with J.F.Herd, "An instantaneous direction reading radio goniometer", Journal of
    the Institution of Electrical Engineers 64:611.
    1933, The Cathode Ray Oscillograph in Radio Research.
    1935, Through the Weather Hours (autobiography).
    1936, "Polarisation errors in direction finders", Wireless Engineer 13:3. 1958, Three Steps to Victory.
    1959, The Pulse of Radar.
    1961, Man's Means to his End.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, Stevenage: Peter Peregrinus.
    KF

    Biographical history of technology > Watson-Watt, Sir Robert Alexander

  • 8 Sperry, Elmer Ambrose

    [br]
    b. 21 October 1860 Cincinnatus, Cortland County, New York, USA
    d. 16 June 1930 Brooklyn, New York, USA
    [br]
    American entrepreneur who invented the gyrocompass.
    [br]
    Sperry was born into a farming community in Cortland County. He received a rudimentary education at the local school, but an interest in mechanical devices was aroused by the agricultural machinery he saw around him. His attendance at the Normal School in Cortland provided a useful theoretical background to his practical knowledge. He emerged in 1880 with an urge to pursue invention in electrical engineering, then a new and growing branch of technology. Within two years he was able to patent and demonstrate his arc lighting system, complete with its own generator, incorporating new methods of regulating its output. The Sperry Electric Light, Motor and Car Brake Company was set up to make and market the system, but it was difficult to keep pace with electric-lighting developments such as the incandescent lamp and alternating current, and the company ceased in 1887 and was replaced by the Sperry Electric Company, which itself was taken over by the General Electric Company.
    In the 1890s Sperry made useful inventions in electric mining machinery and then in electric street-or tramcars, with his patent electric brake and control system. The patents for the brake were important enough to be bought by General Electric. From 1894 to 1900 he was manufacturing electric motor cars of his own design, and in 1900 he set up a laboratory in Washington, where he pursued various electrochemical processes.
    In 1896 he began to work on the practical application of the principle of the gyroscope, where Sperry achieved his most notable inventions, the first of which was the gyrostabilizer for ships. The relatively narrow-hulled steamship rolled badly in heavy seas and in 1904 Ernst Otto Schuck, a German naval engineer, and Louis Brennan in England began experiments to correct this; their work stimulated Sperry to develop his own device. In 1908 he patented the active gyrostabilizer, which acted to correct a ship's roll as soon as it started. Three years later the US Navy agreed to try it on a destroyer, the USS Worden. The successful trials of the following year led to widespread adoption. Meanwhile, in 1910, Sperry set up the Sperry Gyroscope Company to extend the application to commercial shipping.
    At the same time, Sperry was working to apply the gyroscope principle to the ship's compass. The magnetic compass had worked well in wooden ships, but iron hulls and electrical machinery confused it. The great powers' race to build up their navies instigated an urgent search for a solution. In Germany, Anschütz-Kämpfe (1872–1931) in 1903 tested a form of gyrocompass and was encouraged by the authorities to demonstrate the device on the German flagship, the Deutschland. Its success led Sperry to develop his own version: fortunately for him, the US Navy preferred a home-grown product to a German one and gave Sperry all the backing he needed. A successful trial on a destroyer led to widespread acceptance in the US Navy, and Sperry was soon receiving orders from the British Admiralty and the Russian Navy.
    In the rapidly developing field of aeronautics, automatic stabilization was becoming an urgent need. In 1912 Sperry began work on a gyrostabilizer for aircraft. Two years later he was able to stage a spectacular demonstration of such a device at an air show near Paris.
    Sperry continued research, development and promotion in military and aviation technology almost to the last. In 1926 he sold the Sperry Gyroscope Company to enable him to devote more time to invention.
    [br]
    Principal Honours and Distinctions
    John Fritz Medal 1927. President, American Society of Mechanical Engineers 1928.
    Bibliography
    Sperry filed over 400 patents, of which two can be singled out: 1908. US patent no. 434,048 (ship gyroscope); 1909. US patent no. 519,533 (ship gyrocompass set).
    Further Reading
    T.P.Hughes, 1971, Elmer Sperry, Inventor and Engineer, Baltimore: Johns Hopkins University Press (a full and well-documented biography, with lists of his patents and published writings).
    LRD

    Biographical history of technology > Sperry, Elmer Ambrose

См. также в других словарях:

  • Electrical engineering — Electrical engineering, sometimes referred to as electrical and electronic engineering, is a field of engineering that deals with the study and application of electricity, electronics and electromagnetism. The field first became an identifiable… …   Wikipedia

  • Society of Engineers UK — The Society of Engineers was a learned society that was integrated with the Institution of Incorporated Engineers (IIE) in 2005, [cite book|title=Engineering Technology|date=2005 04 29] with both societies later beingincorporated into the… …   Wikipedia

  • College of Electrical and Mechanical Engineering — (EME) Established 1957 Type Military Rector Lieutenant General Muhammad Asghar, PA …   Wikipedia

  • Electromagnetic compatibility — (EMC) is the branch of electrical sciences which studies the unintentional generation, propagation and reception of electromagnetic energy with reference to the unwanted effects (Electromagnetic Interference, or EMI) that such energy may induce.… …   Wikipedia

  • Cockpit voice recorder — (on display in the Deutsches Museum). This is a magnetic tape unit built to an old standard TSO C84 as shown on the nameplate. The text on the side in French flight recorder do not open …   Wikipedia

  • Lynn, Massachusetts — Infobox Settlement official name = Lynn, Massachusetts nickname = motto = imagesize = image caption = image mapsize = 250px map caption = Location in Essex County in Massachusetts mapsize1 = map caption1 = subdivision type = Country subdivision… …   Wikipedia

  • Thunderstorm — Electrical storm redirects here. For other uses, see Electrical storm (disambiguation). A typical thunderstorm A thunderstorm, also known as an electrical storm, a lightning storm, thundershower or simply a storm is a form of weather… …   Wikipedia

  • Business and Industry Review — ▪ 1999 Introduction Overview        Annual Average Rates of Growth of Manufacturing Output, 1980 97, Table Pattern of Output, 1994 97, Table Index Numbers of Production, Employment, and Productivity in Manufacturing Industries, Table (For Annual… …   Universalium

  • United Kingdom — a kingdom in NW Europe, consisting of Great Britain and Northern Ireland: formerly comprising Great Britain and Ireland 1801 1922. 58,610,182; 94,242 sq. mi. (244,100 sq. km). Cap.: London. Abbr.: U.K. Official name, United Kingdom of Great… …   Universalium

  • technology, history of — Introduction       the development over time of systematic techniques for making and doing things. The term technology, a combination of the Greek technē, “art, craft,” with logos, “word, speech,” meant in Greece a discourse on the arts, both… …   Universalium

  • List of Russian people — The Millennium of Russia monument in Veliky Novgorod, featuring the statues and reliefs of the most celebrated people in the first 1000 years of Russian history …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»